ISSN 1600-5368

Lars Kr. Hansen

Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway

Correspondence e-mail: larsk@chem.uit.no

Key indicators

Single-crystal X-ray study T = 298 K Mean σ (C–C) = 0.008 Å R factor = 0.038 wR factor = 0.113 Data-to-parameter ratio = 7.3

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

Pentacarbonyl[ethoxy(2-ethoxy-4,5diphenyl-1,3-cyclopentadienyl)carbene]chromium(0)

The title compound, $[Cr(C_{22}H_{23}O_2)(CO)_5]$, is shown to have a slightly distorted octahedral geometry around the Cr atom and a Cr=C carbene bond length of 2.111 (5) Å, clearly showing double-bond character. The axial Cr-C_{CO} bond *trans* to the Cr=C carbene bond is significantly shorter than the equatorial Cr-C_{CO} bonds.

Received 18 June 2003 Accepted 1 August 2003 Online 8 August 2003

Comment

Few examples of highly reduced Fischer carbene complexes are found in the literature. However, Krusic et al. (1976) have reported the reduction of group 6 alkoxyaryl-carbene complexes by Na/K alloy, and Lee & Cooper (1990) have with the published results dealing reduction of $[Bu_3P(CO)_4CrC(OMe)Ph]$ by potassium 1-methylnaphthalenide. In the case of reduction of α,β -unsaturated group 6 carbenes, there are few reports, and these deal mainly with the use of simple reducing agents (Gómez-Gallego et al., 2000; Mancheño et al., 1999). Studies have also been extended to include potassium graphite as a reducing agent for a variety of chromium and tungsten carbenes (Sierra et al., 2002). Normally, bis-carbene complexes are produced from this reaction when quenched with 10% H₂SO₄, but, in the case of reduction of pentacarbonyl(1-ethoxy-3-phenyl-2-propynylidene)chromium(0), a product containing only one carbene moiety was isolated in good yield. From NMR spectroscopic analysis, it was not possible to solve the structure and hence X-ray analysis was necessary.

The title compound, (I), crystallizes in the orthorhombic non-centrosymmetric space group $Pc2_1n$ (non-standard setting of $Pna2_1$). The molecular structure, with the atomic numbering scheme, is shown in Fig. 1. The dihedral angle between phenyl group C16–C21 and the cyclopentadienyl ring is 82.1 (2)°, while that between phenyl group C22–C27 and the cyclopentadienyl ring is 27.2 (2)°. The two phenyl groups are almost perpendicular to each other, with an angle of 88.6 (1)° between the two planes. Atoms C6, O7 and C22 are displaced by 0.026 (8), 0.065 (8) and 0.045 (9) Å, respectively, from the plane of the cyclopentadienyl group; atom C6 is on the opposite side of the plane from atoms O7 and C22.

 \odot 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

metal-organic papers

A slightly distorted octahedral geometry is present about the Cr atom. The Cr1=C6 carbene bond length is 2.111 (5) Å, clearly showing double-bond character when compared to other Cr–C bonds (Orpen *et al.*, 1994). The axial Cr–C_{CO} bond *trans* to the Cr=C carbene bond is significantly shorter [1.832 (6) Å] than the equatorial Cr–C_{CO} bonds [1.877 (7)– 1.907 (7) Å]. This is in agreement with the results found in other investigations (Pohl *et al.*, 1995; Fischer, 1974). The average value for the equatorial C=O bonds is 1.138 (12) Å, compared to a value of 1.166 (7) Å for the axial C=O bond, all in good agreement with the values found for other terminal carbon monoxide metal complexes (Orpen *et al.*, 1994). All other bond lengths in the title molecule are within normal ranges (Allen *et al.*, 1987).

Experimental

Crystals were placed in a vial and dissolved by addition of a small amount of dichloromethane, followed by a few drops of n-hexane. Owing to the dark colour of the solution, it was impossible to determine the saturation point. Crystals were grown by evaporation of the solvent in a refrigerator.

Crystal data

$[Cr(C_{22}H_{23}O_2)(CO)_5]$	Mo $K\alpha$ radiation
$M_r = 510.45$	Cell parameters from 3
Orthorhombic, $Pc2_1n$	reflections
a = 10.174 (4) Å	$\theta = 12 - 16^{\circ}$
b = 12.653 (3) Å	$\mu = 0.50 \text{ mm}^{-1}$
c = 19.559 (9) Å	T = 298 (2) K
$V = 2517.9(16) \text{ Å}^3$	Block, dark red
Z = 4	$0.70 \times 0.50 \times 0.40 \text{ mm}$
$D_x = 1.347 \text{ Mg m}^{-3}$	
Data collection	
Enraf–Nonius CAD-4	1658 reflections with $I > 2\sigma(I)$
diffractometer	$\theta_{\rm max} = 25.0^{\circ}$
ω –2 θ scans	$h = 0 \rightarrow 12$
Absorption correction: refined from	$k = 0 \rightarrow 14$
ΔF (<i>DIFABS</i> ; Walker & Stuart,	$l = 0 \rightarrow 23$
1983)	3 standard reflections
$T_{\rm min} = 0.722, T_{\rm max} = 0.826$	frequency: 120 min
2315 measured reflections	intensity decay: 5%
2315 independent reflections	

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.038$	where $P = (F_o^2 + 2F_c^2)/3$
$wR(F^2) = 0.113$	$(\Delta/\sigma)_{\rm max} = 0.005$
S = 1.00	$\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ \AA}^{-3}$
2315 reflections	$\Delta \rho_{\rm min} = -0.23 \text{ e } \text{\AA}^{-3}$
318 parameters	Absolute structure: Flack (1983)
H-atom parameters constrained	Flack parameter $= 0.02$ (3)

H atoms were refined using a riding model, with $Csp^2 - H = 0.93$ Å, C(methyl)-H = 0.96 Å, C(methylene)-H = 0.97 Å and other $Csp^3 - H = 0.98$ Å. $U_{iso}(H)$ values were set equal to $1.3U_{eq}$ (1.4 U_{eq} for methyl H atoms) of the carrier atom.

Data collection: *CAD*-4-*PC Software* (Enraf–Nonius, 1992); cell refinement: *CELDIM* in *CAD*-4-*PC Software*; data reduction: *XCAD*4 (McArdle & Higgins, 1995); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEX* (McArdle, 1995); software used to prepare material for publication: *OSCAIL* (Version 8; McArdle, 1993).

Figure 1 A view of the title compound, with the atomic numbering scheme. Displacement ellipsoids are drawn at the 20% probability level.

The author thanks Dr Tore Lejon (Department of Chemistry, University of Tromsø, N-9037 Tromsø, Norway), and Dr Miguel A. Sierra and Mar Gómez-Gallego (Departamento de Quimica Organica, Facultad de Quimica, Universidad Complutense, 28040 Madrid, Spain) for kindly providing samples of the title compound, as well as for helpful discussions.

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Enraf-Nonius. (1992). CAD-4-PC Software. Version 1.1. Enraf-Nonius, Delft, The Netherlands.
- Fischer, E. O. (1974). Angew. Chem. 86, 651-682.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gómez-Gallego, M., Mancheño, M. J., Ramirez-López, P., Piñar, C. & Sierra, M. A. (2000). *Tetrahedron*, 56, 4893–4905.
- Krusic, P. J., Klabunde, U., Casey, C. P. & Block, T. F. (1976). J. Am. Chem. Soc. 98, 2015–2018.
- Lee, S. & Cooper, N. J. (1990). J. Am. Chem. Soc. 112, 9419-9420.
- Mancheño, M. J., Sierra, M. A., Gómez-Gallego, M. & Ramirez-López, P. (1999). Organometallics, 18, 3252–3254.
- McArdle, P. (1993). J. Appl. Cryst. 26, 752.
- McArdle, P. (1995). J. Appl. Cryst. 28, 65.
- McArdle, P. & Higgins, T. (1995). XCAD4. National University of Ireland, Galway, Ireland.
- Orpen, A. G., Brammer, L., Allen, F. H., Kennard, O., Watson, D. G. & Taylor, R. (1994). *Structure Correlation*, Vol. 2, edited by H. B. Bürgi and J. D. Dunitz, pp. 751–858. New York: VCH.
- Pohl, E., Kneisel, B. O., Herbst-Irmer, R., de Meijere, A., Funke, F. & Stein, F. (1995). Acta Cryst. C51, 2503–2508.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
- Sierra, M. A., Ramirez-López, P., Gómez-Gallego, M., Lejon, T. & Mancheño, M. J. (2002). Angew. Chem. Int. Ed. Engl. 41, 3442–3445.
- Walker, N. & Stuart, D. (1983). Acta Cryst. A39, 158-166.